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Background

Gaussian process (GP) models form a class of probabilistic models widely used in spatial

statistics, time series and other fields. When Gaussian process models are applied, the

smoothness parameters in their covariance functions are usually unknown, and need to be

estimated from data.

Kent and Wood (1997) constructed increment-based estimators for the smoothness

parameter of a class of univariate GP using regularly spaced observations on [0, 1].

Zhou and Xiao (2018) extended the methods of Kent and Wood (1997) to bivariate case

X = (X1, X2) and studied the joint asymptotic behavior of smoothness estimators for

V ar(X1) and V ar(X2).

Model Setup

Consider a bivariate stationary Gaussian process X = {(X1(t), X2(t))T , t ∈ R} with zero mean

and covariance function

C(t) =
(

C11(t) C12(t)
C21(t) C22(t)

)
. (1)

Assume that

Cii(t) = σ2
i − cii|t|αii + o(|t|αii), (2)

Cij(t) = ρσ1σ2(1 − c12|t|α12 + o(|t|α12), (3)

where σi, cii, cij > 0, αii ∈ (0, 2), |ρ| ∈ (0, 1), i, j ∈ {1, 2}, i 6= j; also α12 > (α11 + α22)/2.
Further assume the condition (Aq) in Kent and Wood (1997) holds for the qth derivative of co-

variance function Cij , that is,

C
(q)
ij (t) = −Aij

αij!
q!

|t|αij−q + o(|t|αij−q) (4)

as |t| → 0, where q ≥ 1, i, j ∈ {1, 2}, Aii = cii, A12 = A21 = ρσ1σ2c12, αij!/q! = αij(αij −
1) . . . (αij − q + 1).

Covariations

Let a = (a−J , . . . , aJ)T be an increment of order p. Denote Xu
n,i ∈ Rn(2J+1) the vector of obser-

vations of component Xi, where i = 1, 2, u = 1, . . . , m and n ∈ Z+. For j = 1, 2, . . . , 2J + 1 and

k = 1, . . . , n,

(Xu
n,i)j+(k−1)(2J+1) = Xi

(
k + u(j − J − 1)

n

)
.

Define

Y u
n :=

(
Y u

n,1
Y u

n,2

)
=

(
nα11/2(In ⊗ aT ) 0

0 nα22/2(In ⊗ aT )

)
Xu

n,

where ⊗ denotes the Kronecker product, Xu
n =

(
Xu

n,1
Xu

n,2

)
. More specifically, for k = 1, . . . , n,

Y u
n,i(k) = nαii/2

2J+1∑
j=1

aj−J−1(Xu
n,i)j+(k−1)(2J+1).

Denote Zu
n,12(j) = nα12−(α11+α22)/2Y u

n,1(j)Y u
n,2(j) for j = 1, . . . , n.

The covariation is defined as

Z̄u
n,12 = 1

n

n∑
j=1

Zu
n,12(j). (5)

Theorem 1

Denote A = −ρσ1σ2c12
∑

k,l akal|k − l|α12.

For any j = 1, . . . , n and any u = 1, . . . , m,

E[Zu
n,12(j)] → Auα12 as n → ∞,

where A = 0 if α12/2 ∈ Z and p ≥ α12/2.

Denote Z̄n,12 = (Z̄1
n,12, . . . , Z̄m

n,12)
T and take p ≥ 1. When α11 + α22 < 2α12 and (4) holds for

q = 2p + 2,
n1/2+(α11+α22)/2−α12(Z̄n,12 − EZ̄n,12) ⇒ N(0, Φ) (6)

as n → ∞ for some constant matrix Φ ∈ Rm×m.

Main Results

Define the estimator of α12 as

α̂12 = 1
2

m∑
u=1

Lu ln(Z̄u
n,12)

2 (7)

= 1
2

m∑
u=1

Lu ln
(

Xu
n

T
(

0 In ⊗ (aaT )
In ⊗ (aaT ) 0

)
Xu

n

)2
, (8)

where {Lu, u = 1, . . . , m} is a list of constants satisfying
∑m

u=1 Lu = 0 and
∑m

u=1 Lu ln u = 1,

Theorem 2

Assume (4) holds for q = 2p + 3. When α11 + α22 < 2α12 < α11 + α22 + 1 < 4p + 4 or

4p + 3 < α11 + α22 < 2α12 < 4p + 4,
α̂12

a.s.→ α12 as n → ∞
if A 6= 0.

Take p ≥ 1. Assume (4) holds for q = 2p + 2 and

C12(t) = C21(t) = ρσ1σ2(1 − c12|t|α12 + O(|t|α12+β12) as t → 0 (9)

for some β12 > 0. If A 6= 0, α11 + α22 < 2α12 and α12 + β12 > (α11 + α22 + 1)/2, then

n1/2+(α11+α22)/2−α12(α̂12 − α12) ⇒ N(0, A−2L̃T ΦL̃) (10)

as n → ∞, where L̃ = (L1, L2/2α12, . . . , Lm/mα12)T ∈ Rm.

Simulation

Denote Mν(t) = 21−νΓ(ν)−1|t|νKν(|t|) the Matérn covariance function. Take C11 = C22 = M0.5
and C12 = C21 = 0.5M0.55. Let m = 50, p = 1, a = (1, −2, 1)T and n ∈ {200, 250, . . . , 1000}. For
each value of n, generate 3000 independent realizations of the process X .

In this case, σ1 = σ2 = 1, ρ = 0.5, α12 = 1.1, c12 = 0.51.1Γ(1 − 0.55)/Γ(1 + 0.55), A ≈ 1.9177.

Simulation results shown in the following two figures illustrate the asymptotic behavior of α̂12.
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Future Directions

The estimator discussed above is constructed based on observations ofX on regular grids. Study-

ing irregular sampling designs would be one direction for future research. Confidence intervals

and hypothesis testings regarding α12 are also interesting to consider.
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