Cross Smoothness Parameter Estimation for Bivariate Gaussian Processes

Background

- Gaussian process (GP) models form a class of probabilistic models widely statistics, time series and other fields. When Gaussian process models are smoothness parameters in their covariance functions are usually unknown estimated from data.
- Kent and Wood (1997) constructed increment-based estimators for the si parameter of a class of univariate GP using regularly spaced observations
- Zhou and Xiao (2018) extended the methods of Kent and Wood (1997) to $X = (X_1, X_2)$ and studied the joint asymptotic behavior of smoothness es $Var(X_1)$ and $Var(X_2)$.

Model Setup

Consider a bivariate stationary Gaussian process $X = \{(X_1(t), X_2(t))^T, t \in$ and covariance function

Assume that

$$C(t) = \begin{pmatrix} C_{11}(t) & C_{12}(t) \\ C_{21}(t) & C_{22}(t) \end{pmatrix}.$$

 $C_{ii}(t) = \sigma_i^2 - c_{ii} |t|^{\alpha_{ii}} + o(|t|^{\alpha_{ii}}),$

 $C_{ij}(t) = \rho \sigma_1 \sigma_2 (1 - c_{12} |t|^{\alpha_{12}} + o(|t|^{\alpha_{12}}),$

where $\sigma_i, c_{ii}, c_{ij} > 0$, $\alpha_{ii} \in (0, 2)$, $|\rho| \in (0, 1)$, $i, j \in \{1, 2\}$, $i \neq j$; also $\alpha_{12} > (\alpha_{12} + 1)$ Further assume the condition (A_q) in Kent and Wood (1997) holds for the variance function C_{ij} , that is,

$$C_{ij}^{(q)}(t) = -A_{ij} \frac{\alpha_{ij}!}{q!} |t|^{\alpha_{ij}-q} + o(|t|^{\alpha_{ij}-q})$$

as $|t| \rightarrow 0$, where $q \geq 1$, $i, j \in \{1, 2\}$, $A_{ii} = c_{ii}$, $A_{12} = A_{21} = \rho \sigma_1 \sigma_2 c_{12}$, 1) . . . $(\alpha_{ij} - q + 1)$.

Covariations

Let $a = (a_{-J}, \ldots, a_J)^T$ be an increment of order p. Denote $X_{n,i}^u \in \mathbb{R}^{n(2J+1)}$ vations of component X_i , where $i = 1, 2, u = 1, \ldots, m$ and $n \in \mathbb{Z}^+$. For j = $k=1,\ldots,n,$

$$(X_{n,i}^u)_{j+(k-1)(2J+1)} = X_i \left(\frac{k+u(j-J-1)}{n}\right).$$

Define

$$Y_{n}^{u} := \begin{pmatrix} Y_{n,1}^{u} \\ Y_{n,2}^{u} \end{pmatrix} = \begin{pmatrix} n^{\alpha_{11}/2}(I_{n} \otimes a^{T}) & 0 \\ 0 & n^{\alpha_{22}/2}(I_{n} \otimes a^{T}) \end{pmatrix} X_{n}^{u},$$

where \otimes denotes the Kronecker product, $X_n^u = \begin{pmatrix} X_{n,1}^u \\ X_{n,2}^u \end{pmatrix}$. More specifically, for $k = 1, \ldots, n$,

$$Y_{n,i}^{u}(k) = n^{\alpha_{ii}/2} \sum_{j=1}^{2J+1} a_{j-J-1} (X_{n,i}^{u})_{j+(k-1)(2J+1)}.$$

Denote $Z_{n,12}^u(j) = n^{\alpha_{12}-(\alpha_{11}+\alpha_{22})/2}Y_{n,1}^u(j)Y_{n,2}^u(j)$ for $j = 1, \ldots, n$.

BKT Workshop Poster Session

Nian Liu

Department of Statistics and Probability, Michigan State University

he covariation is defined as

 $\bar{Z}_{n,12}^u = \frac{1}{n} \sum_{i=1}^n Z_{n,12}^u(j).$

Theorem 1

Denote $A = -\rho \sigma_1 \sigma_2 c_{12} \sum_{k,l} a_k a_l |k - l|^{\alpha_{12}}$.

• For any $j = 1, \ldots, n$ and any $u = 1, \ldots, m$,

 $E[Z_{n,12}^u(j)] \to Au^{\alpha_{12}} \quad \text{as } n \to \infty,$ where A = 0 if $\alpha_{12}/2 \in \mathbb{Z}$ and $p \ge \alpha_{12}/2$.

• Denote $\bar{Z}_{n,12} = (\bar{Z}_{n,12}^1, \dots, \bar{Z}_{n,12}^m)^T$ and take $p \ge 1$. When $\alpha_{11} + \alpha_{22} < 2\alpha_{12}$ and (4) holds for q = 2p + 2, $n^{1/2 + (\alpha_{11} + \alpha_{22})/2 - \alpha_{12}} (\bar{Z}_{n,12} - E\bar{Z}_{n,12}) \Rightarrow N(0, \Phi)$

as $n \to \infty$ for some constant matrix $\Phi \in \mathbb{R}^{m \times m}$.

Main Results

) efine the estimator of α_{12} as

$$\hat{u}_{12} = \frac{1}{2} \sum_{u=1}^{m} L_u \ln(\bar{Z}_{n,12}^u)^2$$

$$= \frac{1}{2} \sum_{u=1}^{m} L_u \ln\left(X_n^{uT} \begin{pmatrix} 0 & I_n \otimes (aa^T) \\ I_n \otimes (aa^T) & 0 \end{pmatrix} X_n^u \right)^2,$$
(8)

where $\{L_u, u=1,\ldots,m\}$ is a list of constants satisfying \sum

Theorem 2

• Assume (4) holds for q = 2p + 3. When $\alpha_{11} + \alpha_{22} < 2\alpha$ $4p + 3 < \alpha_{11} + \alpha_{22} < 2\alpha_{12} < 4p + 4,$

 $\hat{lpha}_{12} \stackrel{a.s.}{
ightarrow} lpha_{12} \quad {
m as} \; n
ightarrow \infty$

if $A \neq 0$.

• Take $p \ge 1$. Assume (4) holds for q = 2p + 2 and $C_{12}(t) = C_{21}(t) = \rho \sigma_1 \sigma_2 (1 - c_{12}|t|^{\alpha_{12}} + 0)$ for some $\beta_{12} > 0$. If $A \neq 0$, $\alpha_{11} + \alpha_{22} < 2\alpha_{12}$ and $\alpha_{12} + \alpha_{12} = 0$. $n^{1/2 + (\alpha_{11} + \alpha_{22})/2 - \alpha_{12}} (\hat{\alpha}_{12} - \alpha_{12}) \Rightarrow$ as $n \to \infty$, where $\tilde{L} = (L_1, L_2/2^{\alpha_{12}}, \dots, L_m/m^{\alpha_{12}})^T \in \mathbb{R}^m$.

Simulation

Denote $M_{\nu}(t) = 2^{1-\nu}\Gamma(\nu)^{-1}|t|^{\nu}K_{\nu}(|t|)$ the Matérn covariance function. Take $C_{11} = C_{22} = M_{0.5}$ and $C_{12} = C_{21} = 0.5M_{0.55}$. Let $m = 50, p = 1, a = (1, -2, 1)^T$ and $n \in \{200, 250, \dots, 1000\}$. For each value of n, generate 3000 independent realizations of the process X. In this case, $\sigma_1 = \sigma_2 = 1$, $\rho = 0.5$, $\alpha_{12} = 1.1$, $c_{12} = 0.5^{1.1}\Gamma(1 - 1)$

$$\sum_{u=1}^{m} L_u = 0$$
 and $\sum_{u=1}^{m} L_u \ln u = 1$,

$$\alpha_{12} < \alpha_{11} + \alpha_{22} + 1 < 4p + 4 \text{ or}$$

$$O(|t|^{\alpha_{12}+\beta_{12}}) \text{ as } t \to 0$$
(9)
$$-\beta_{12} > (\alpha_{11} + \alpha_{22} + 1)/2, \text{ then}$$

$$> N(0, A^{-2}\tilde{L}^T \Phi \tilde{L})$$
(10)

$$(0.55)/\Gamma(1+0.55), A \approx 1.9177.$$

The estimator discussed above is constructed based on observations of X on regular grids. Studying irregular sampling designs would be one direction for future research. Confidence intervals and hypothesis testings regarding α_{12} are also interesting to consider.

- [1] John T. Kent and Andrew T. A. Wood. Estimating the fractal dimension of a locally self-similar gaussian process by using increments. Journal of the Royal Statistical Society. Series B (Methodological), 59(3):679–699, 1997.
- [2] Yuzhen Zhou and Yimin Xiao. Joint asymptotics for estimating the fractal indices of bivariate gaussian processes. Journal of Multivariate Analysis, 165:56–72, 2018.

Simulation results shown in the following two figures illustrate the asymptotic behavior of $\hat{\alpha}_{12}$.

Future Directions

References