Background

- Gaussian process (GP) models form a class of probabilistic models widely used in spatial statistics, time series and other fields. When Gaussian process models are applied, the smoothness parameters in their covariance functions are usually unknown, and need to be estimated from data.
- Kent and Wood (1997) constructed increment-based estimators for the smoothness parameter of a class of univariate GP using regularly spaced observations on $[0,1]$.

Zhou and Xiao (2018) extended the methods of Kent and Wood (1997) to bivariate case $X=\left(X_{1}, X_{2}\right)$ and studied the joint asymptotic behavior of smoothness estimators for $\operatorname{Var}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{2}\right)$.

Model Setup

Consider a bivariate stationary Gaussian process $X=\left\{\left(X_{1}(t), X_{2}(t)\right)^{T}, t \in \mathbb{R}\right\}$ with zero mean
and covariance function

$$
C(t)=\left(\begin{array}{ll}
C_{12}(t) & C_{12}(t) \\
C_{21}(t) & C_{22}(t)
\end{array}\right) .
$$

Assume that

$$
C_{i i}(t)=\sigma_{i}^{2}-c_{i i}|t|^{\alpha_{i i}}+o\left(|t|^{\alpha_{i i}}\right),
$$

$$
C_{i j}(t)=\rho \sigma_{1} \sigma_{2}\left(1-c_{12}|t|^{\alpha_{12}}+o\left(|t|^{\alpha_{12}}\right),\right.
$$

where $\sigma_{i}, c_{i i}, c_{i j}>0, \alpha_{i i} \in(0,2),|\rho| \in(0,1), i, j \in\{1,2\}, i \neq j$; also $\alpha_{12}>\left(\alpha_{11}+\alpha_{22}\right) / 2$. Further assume the condition $\left(A_{q}\right)$ in Kent and Wood (1997) holds for the q th derivative of covariance function $C_{i j}$, that is,

$$
\begin{equation*}
C_{i j}^{(q)}(t)=-A_{i j} \frac{\alpha_{i j}!}{q!}|t|^{\alpha_{i j}-q}+o\left(|t|^{\alpha_{i j}-q}\right) \tag{4}
\end{equation*}
$$

as $|t| \rightarrow 0$, where $q \geq 1, i, j \in\{1,2\}, A_{i i}=c_{i i}, A_{12}=A_{21}=\rho \sigma_{1} \sigma_{2} c_{12}, \alpha_{i j}!/ q!=\alpha_{i j}\left(\alpha_{i j}\right.$ 1). $\ldots\left(\alpha_{i j}-q+1\right)$.

Covariations

Let $a=\left(a_{-J}, \ldots, a_{J}\right)^{T}$ be an increment of order p. Denote $X_{n, i}^{u} \in \mathbb{R}^{n(2 J+1)}$ the vector of observations of component X_{i}, where $i=1,2, u=1, \ldots, m$ and $n \in \mathbb{Z}^{+}$. For $j=1,2, \ldots, 2 J+1$ and $k=1, \ldots, n$,

$$
\left(X_{n, i}^{u}\right)_{j+(k-1)(2 J+1)}=X_{i}\left(\frac{k+u(j-J-1)}{n}\right)
$$

Define

$$
Y_{n}^{u}:=\binom{Y_{n, 1}^{u}}{Y_{n, 2}^{u}}=\left(\begin{array}{cc}
n^{\alpha_{11} / 2}\left(I_{n} \otimes a^{T}\right) & 0 \\
0 & n^{\alpha_{22} / 2}\left(I_{n} \otimes a^{T}\right)
\end{array}\right) X_{n}^{u},
$$

where \otimes denotes the Kronecker product, $X_{n}^{u}=\binom{X_{n, 1}^{u}}{X_{n, 2}^{u}}$. More specifically, for $k=1, \ldots, n$,

$$
Y_{n, i}^{u}(k)=n^{\alpha_{i} / 2} \sum_{j=1}^{2 J+1} a_{j-J-1}\left(X_{n, i}^{u}\right)_{j+(k-1)(2 J+1)} .
$$

Denote $Z_{n, 12}^{u}(j)=n^{\alpha_{12}-\left(\alpha_{11}+\alpha_{22}\right) / 2} Y_{n, 1}^{u}(j) Y_{n, 2}^{u}(j)$ for $j=1, \ldots, n$

The covariation is defined as

$$
\begin{equation*}
\bar{Z}_{n, 12}^{u}=\frac{1}{n} \sum_{j=1}^{n} Z_{n, 12}^{u}(j) . \tag{5}
\end{equation*}
$$

```
Denote }A=-\rho\mp@subsup{\sigma}{1}{}\mp@subsup{\sigma}{2}{}\mp@subsup{c}{12}{}\mp@subsup{\sum}{k,l}{}l\mp@subsup{a}{k}{}\mp@subsup{a}{l}{}|k-l|\mp@subsup{|}{}{\mp@subsup{\alpha}{12}{\prime2}}
- For any j=1,\ldots,n and any u=1,\ldots,m,
E[ZZ,\mp@code{12}(j)]->A\mp@subsup{u}{}{\mp@subsup{\alpha}{12}{\prime2}}\mathrm{ as n }->\infty,
where }A=0\mathrm{ if }\mp@subsup{\alpha}{12}{}/2\in\mathbb{Z}\mathrm{ and }p\geq\mp@subsup{\alpha}{12}{}/2\mathrm{ .
- Denote }\mp@subsup{\overline{Z}}{n,12}{}=(\mp@subsup{\overline{Z}}{n,12}{1},\ldots,\mp@subsup{\overline{Z}}{n,12}{m}\mp@subsup{)}{}{T}\mathrm{ and take }p\geq1\mathrm{ . When }\mp@subsup{\alpha}{11}{}+\mp@subsup{\alpha}{22}{}<2\mp@subsup{\alpha}{12}{}\mathrm{ and (4) holds for
q=2p+2,
n
(6)
as \(n \rightarrow \infty\) for some constant matrix \(\Phi \in \mathbb{R}^{m \times m}\)
```


Main Results

Define the estimator of α_{12} as

$$
\begin{aligned}
\hat{\alpha}_{12} & =\frac{1}{2} \sum_{u=1}^{m} L_{u} \ln \left(\bar{Z}_{n, 12}^{u}\right)^{2} \\
& =\frac{1}{2} \sum_{u=1}^{m} L_{u} \ln \left(X_{n}^{u T}\left(\begin{array}{cc}
0 & I_{n} \otimes\left(a a^{T}\right) \\
I_{n} \otimes\left(a a^{T}\right) & 0
\end{array}\right) X_{n}^{u}\right)^{2},
\end{aligned}
$$

$$
\text { where }\left\{L_{u}, u=1, \ldots, m\right\} \text { is a list of constants satisfying } \sum_{u=1}^{m} L_{u}=0 \text { and } \sum_{u=1}^{m} L_{u} \ln u=1 \text {, }
$$

$$
\text { Theorem } 2
$$

```
- Assume (4) holds for q=2p+3. When }\mp@subsup{\alpha}{11}{}+\mp@subsup{\alpha}{22}{}<2\mp@subsup{\alpha}{12}{}<\mp@subsup{\alpha}{11}{}+\mp@subsup{\alpha}{22}{}+1<4p+4\mathrm{ or
    4p+3<\alpha\mp@subsup{\alpha}{11}{}+\mp@subsup{\alpha}{22}{}<2\mp@subsup{\alpha}{12}{}<4p+4,
```

 if \(A \neq 0\).
 -Take $p \geq 1$. Assume (4) holds for $q=2 p+2$ and
$C_{12}(t)=C_{21}(t)=\rho \sigma_{1} \sigma_{2}\left(1-c_{12}|t|^{\alpha_{12}}+O\left(|t|^{\alpha_{12}+\beta_{12}}\right) \quad\right.$ as $t \rightarrow 0$
for some $\beta_{12}>0$. If $A \neq 0, \alpha_{11}+\alpha_{22}<2 \alpha_{12}$ and $\alpha_{12}+\beta_{12}>\left(\alpha_{11}+\alpha_{22}+1\right) / 2$, then
$n^{1 / 2+\left(\alpha_{11}+\alpha_{22}\right) / 2-\alpha_{12}\left(\hat{\alpha}_{12}-\alpha_{12}\right) \Rightarrow N\left(0, A^{-2} \tilde{L}^{T} \Phi \tilde{L}\right)}$
(10)
as $n \rightarrow \infty$, where $\tilde{L}=\left(L_{1}, L_{2} / 2^{\alpha_{12}}, \ldots, L_{m} / m^{\alpha_{12}}\right)^{T} \in \mathbb{R}^{m}$

Simulation

 Denote $M_{\nu}(t)=2^{1-\nu} \Gamma(\nu)^{-1}|t|^{\nu} K_{\nu}(|t|)$ the Matérn covariance function. Take $C_{11}=C_{22}=M_{0.5}$ and $\mathrm{C}_{12}=\mathrm{C}_{21}=0.5 \mathrm{M}_{0} .55$. Let $m=50, p=1, a=(1,-2,1)$ and $n \in\{2$.
each value of n, generate 3000 independent realizations of the process X.
In this case $\sigma_{1}=\sigma_{2}=1, \rho=0.5, \alpha_{12}=11, c_{12}=0.5^{1.1} \Gamma(1-0.55) / \Gamma(1+0.55), A \approx 1.9177$.

$\sqrt{n^{1-2 \alpha_{12}+\alpha_{11}+\alpha_{2}}}\left(\hat{\alpha}_{12}-\alpha_{12}\right)$

Future Directions
The estimator discussed above is constructed based on observations of X on regular grids. Studying irregular sampling designs would be one direction for future research. Confidence intervals and hypothesis testings regarding α_{12} are also interesting to consider.

References

[^0]
[^0]: John T. Kent and Andrew T. A. Wood.
 Estimating the fractald dimenension of of locally self-similar gaussian process by wing increments

 Joint asymptotics for estinating the fractal indices of tion

